top of page
Nuestras actividades en cinemática
Study of the Biot-Savart Law for a Coil
Nivel:
High-School

This activity allows students to visualize the relationship between electric current and magnetic field by measuring the effect of a coil with a magnetometer. They will learn how to use a sensor, analyze experimental data, and verify a fundamental physical law: the Biot-Savart Law.
Utiliser le magnétomètre de Fizziq comme détecteur de métal
Nivel:
Cycle 3, Collège

Cette manipulation permet aux élèves d’explorer l’interaction entre les matériaux et le champ magnétique terrestre, en observant comment les objets ferromagnétiques modifient localement les mesures du magnétomètre. Elle illustre des concepts du magnétisme et introduit des applications pratique de l'utilisation du magnétomètre comme l'archéologie sous-marine
Athlétisme : mesure de la vitesse d'éjection lors du lancer de marteau
Nivel:
Lycée

L'activité offre une approche pratique pour comprendre la transformation du mouvement rotatif en mouvement linéaire, un concept clé en physique à travers l'étude du lancer de marteau, discipline olympique. En utilisant des outils d'analyse cinématique pour étudier une vidéo de lancer de marteau présente dans la bibliothèque cinématique, les élèves calculent la vitesse d'éjection et la confrontent à la vitesse théorique obtenue en utilisant la vitesse de rotation de l'athlète. Cette analyse permet d'identifier d'autres facteurs importants du lancer comme l'angle d'éjection vertical.
Nivel:
Etude de l'effet Doppler pour un pendule sonore ou une balançoire
Nivel:
Lycée

Cette activité pédagogique invite les élèves à étudier l'effet Doppler via un pendule sonore créé en suspendant un smartphone émettant un son. Ils examineront les variations de fréquence dues au mouvement du pendule, mettant en pratique des notions telles que fréquence, période, et vitesse. L'analyse de la courbe de fréquence asymétrique stimule la réflexion critique. L'intégration de la technologie renforce l'expérience d'apprentissage, encourageant une démarche scientifique active et la communication des résultats dans un cahier d'expérience. Cette expérience peut également être réalisée en utilisant une balançoire sur laquelle un élève tient une source sonore.
How to measure the speed of a skier using video analysis?
Nivel:
Middle school, High school

Students calculate the speed of a skier during a ski competition using the analysis of a video taken from FizziQ's video library. They could also analyse their own video taken with a smartphone. Students analyze the trajectory to determine the speed of the skier and confirm the speed displayed by the TV company of the screen. Introduction to video analysis using FizziQ kinematics module is fully described in the protocol.
What is the trajectory of a basketball?
Nivel:
High school

In this activity, the student studies the trajectory of a ball by kinematic analysis of a video of a shot. He will find an appropriate scale and then point to the different positions in FizziQ kinematic analysis module . By adding the calculated positions to his notebook, he will determine the type of trajectory of the ball, then using the smoothing tool, he will calculate the equation of the curve and confirm his intuition about the shape of the curve.
How do pole vault jumpers jump so high?
Nivel:
High school

Pole vault jumping is one of the most complex sport on which to conduct a biomechanics analysis. Using a video and the kinetics module of FizziQ, students are able to study the movement of the athlete, identify the various phases, apply the various the laws of mechanics to understand how the athlete takes off and why they jump so high. This analysis will make them understand the difficulty of this sport, and they will be able to make suggestions for the athlete to improve their performance.
Déterminer le centre de gravité d'un mouvement complexe
Nivel:
Collège, Lycée

Il est en général facile de déterminer le centre de gravité d'une personne debout ou allongée. Mais comment le déterminer quand un athlète effectue des figures complexes qui entraînent des déformations de son corps ? Heureusement, nous savons que le centre de gravité d'un plongeur décrit une parabole. En utilisant cette information, l'élève réalise une analyse cinématique du plongeon d'une athlète, et, par essais successifs, positionne le centre de gravité sur la vidéo jusqu'à obtenir le mouvement parabolique attendu pour ce point.
Mesurer la vitesse du son par émission d'un bruit dans un tube
Nivel:
Lycée

Si plusieurs fréquences sont émises simultanément dans une cavité, les harmoniques de la fréquence de résonance de la cavité seront amplifiées par rapport aux autres fréquences émises. On utilise cette propriété pour mesurer la vitesse du son en utilisant un bruit blanc ou rose émis par un smartphone à travers un tube et en mesurant les fréquences qui sont amplifiées. Cette expérience est toujours étonnante pour les élèves et leur permet de mieux comprendre les phénomènes de résonance de Helmholtz, ainsi que les caractéristiques sonores du bruit blanc. On pourra également utiliser un bruit rose à la place du bruit blanc.
Mesurer la vitesse du son en débouchant une bouteille de vin
Nivel:
Lycée

Quand on débouche une bouteille de vin, on entend un son caractéristique dont la fréquence dépend du volume d'air du goulot et de la vitesse du son. Ce son est du à la résonance de l'air dans le goulot. En mesurant cette fréquence et en estimant le volume d'air, on peut estimer la vitesse du son. La fréquence peut être aisément calculée avec le fréquencemètre de l'application FizziQ. Attention, cette expérience ne peut pas vraiment être reproduite !
Utiliser la loi des sinus pour mesurer les longueurs d’un triangle
Nivel:
Lycée

En utilisant le théodolite, les élèves utilisent la loi des sinus pour mesurer les longueurs d'un triangle dans la cour de récréation.
Cette mise en pratique permet une acquisition rapide et expérimentale d'un concept qui est souvent abstrait, et il peut être fait indifféremment avec une tablette ou un smartphone.
Analyser les incertitudes de mesures
Nivel:
Lycée

Toute mesure, en physique ou dans d’autres disciplines, contient une part d'incertitude, qui provient par exemple de la précision intrinsèque des instruments de mesure utilisés ou du protocole d’expérimentation. Dans cette activité, l’élève utilise son smartphone pour mesurer différentes grandeurs physique (par exemple le champ magnétique ou la vitesse de rotation lorsqu’il effectue un tour sur lui-même) et il étudie la distribution des résultats et observe comme varient moyenne et écart-type
Trajectoire d'un ballon de basket lors d'un tir
Nivel:
Lycée

Dans cette activité, l'élève étudie la trajectoire d'un ballon par analyse cinématique d'une vidéo d'un tir. Il trouvera une échelle appropriée puis pointera les différentes positions. En ajoutant les positions calculées à son cahier, il déterminera le type de trajectoire de la balle, puis en utilisant l'outil de lissage, il calculera l'équation de la courbe et confirmera son intuition sur la forme de la courbe.
Etude de la trajectoire d'un ballon de football
Nivel:
Collège

L'élève réalise l'étude cinématique d'un tir au but à partir d'une vidéo de la bibliothèque de vidéos cinématique. Il analyse la trajectoire pour déterminer si elle est rectiligne, et la vitesse pour vérifier que le mouvement du ballon est uniforme. La prise en main de l'analyse cinématique est entièrement décrite dans le protocole.
What is the link between notes and sound frequencies?
Nivel:
Middle School

Using sounds from the sound library and measuring the fundamental frequency, the student calculates what the frequencies of the different musical notes are, how those notes are distributed within an octave, and what is the relationship between them. notes of different octaves. At the end of this study, the student tries to find the notes of a piece of music by identifying their frequencies.
Conservation de l'énergie pour un pendule (étude cinématique)
Nivel:
Lycée

Le physicien Huygens au 17ème siècle est le premier à caractériser le mouvement d'un pendule simple. Dans l'activité proposée, à partir d'un enregistrement vidéo du mouvement d'un pendule disponible sur le site FizziQ.org, nous proposons l'étude cinématique d'un pendule qui permet de montrer de manière concrète le lien entre énergie potentielle et énergie cinétique. Il est possible pour le professeur ou les élèves de créer leur propre vidéo à étudier.
How do Space X rockets land?
Nivel:
High School

What is the landing program for a Space X rocket? Using the Kinematics module, the student analyzes the descent movement of a Falcon 9 rocket on a barge in the open sea. He notes that the descent speed of the rocket is linear. Why such a downhill goal? Is it more efficient?
How far should I be from a loudspeaker to save my hearing?
Nivel:
High School

It is often mentioned in textbooks that the sound decreases with the square of the distance, but few experiments allow this to be verified. In this protocol, the student uses the sound of white noise from the sound library which achieves very stable and precise results. The activity opens up discussions on the risks of noise for health and the irremediable consequences for the body of a sound trauma.
Relation entre niveau sonore et distance à la source
Nivel:
Lycée

Dans cette activité, l'élève va étudier la relation entre l'intensité sonore et la distance entree l'émetteur et le récepteur. Pour vérifier cette relation il est essentiel d'utiliser un bruit blanc car sinon des interférences peuvent se produire due à la réflexion des ondes sonores sur les parties autour du dispositif. Dans ce protocole, l'élève utilise le son du bruit blanc de la bibliothèque de son qui permet d'obtenir des résultats très stables et précis. L'activité permet d'ouvrir des discussions sur les risques du bruit pour la santé et les conséquences irrémédiables pour l'organisme d'un traumatisme sonore.
Calcul de la valeur g par analyse de la chute libre
Nivel:
Lycée

Galilée est le premier à documenter le fait que la distance parcourue par un objet durant une chute est proportionnelle au carré du temps écoulé. Il détermine ainsi la valeur de la pesanteur terrestre. L'élève reproduit cette expérience avec son portable. Il ou elle mesure le temps que met un objet à tomber en enregistrant les valeurs de l'accélération linéaire mesurées par son smartphone. Il ou elle en déduit une valeur de l'apesanteur à partir de l'équation horaire de la chute libre.
Etude de la relations entre notes de musique et fréquences
Nivel:
Cycle 4

En utilisant les sons de la bibliothèque de son et la mesure de la fréquence fondamentale, l'élève calcule quelles sont les fréquences des différentes notes de musique, comment ces notes sont réparties au sein d'une octave, et quelle est la relation entre les notes de différentes octaves. A l'issue de cette étude, l'élève essaie de retrouver les notes d'un morceau de musique en identifiant leurs fréquences.
Find Magnetic North Using a Magnetometer
Nivel:

The Earth's magnetic field is an invisible yet essential phenomenon used in navigation, geophysics, and various scientific and technological applications. With a smartphone’s magnetometer, this experiment allows students to find magnetic north experimentally and understand how compasses work.
By performing this activity, students will observe how digital sensors measure physical phenomena, analyze the components of a vector field, and connect their findings to a real-world application: orientation on Earth.
Etude de la loi de Biot-Savart pour une bobine
Nivel:
Lycée

Cette activité permet à l’élève de visualiser le lien entre courant électrique et champ magnétique en mesurant l’effet d’une bobine avec un magnétomètre. Il apprend à manipuler un capteur, analyser des données expérimentales et vérifier une loi physique fondamentale comme la loi de Biot-Savart.
Trouver la direction du nord en utilisant un magnétomètre
Nivel:
Collège

Le champ magnétique terrestre est un phénomène invisible mais essentiel, utilisé en navigation, en géophysique et dans de nombreuses applications scientifiques et technologiques. Grâce au magnétomètre d’un smartphone, cette expérience permet aux élèves de trouver le nord magnétique de manière expérimentale et de comprendre comment les boussoles fonctionnent.
Cette manipulation les amène à observer comment les capteurs numériques mesurent un phénomène physique, à analyser les composantes d’un champ vectoriel, et à relier leurs résultats à une application concrète : l’orientation sur Terre.